На тепловых электростанциях сооружаются в основном дымовые трубы с одним или несколькими стальными газоотводящими стволами в одной железобетонной оболочке и с подвесным газоотводящим стволом из кремнебетонных панелей в железобетонной оболочке. Начато проектирование и строительство двухслойных дымовых труб для ТЭС, работающих на низкосернистых топливах. Дымовая труба представляет собой железобетонную оболочку с внутренним монолитным футеровочным слоем из полимербетона или силикатполимербетона.
По данным института Теплопроект около половины дымовых труб высотой 120—180 м предусматривается построить с футеровкой из кислотостойкого кирпича с кольцевым вентилируемым зазором.
Основным недостатком труб такой конструкции является повышение продолжительности их строительства. Например, сооружение только футеровки дымовой трубы высотой 320 м с диаметром условного прохода 10,6 м занимает 1 год, удлиняется и срок возведения железобетонной оболочки трубы в связи с необходимостью выполнения консолей через каждые 10 м. Кроме того, из-за наличия таких консолей исключается возможность применения при возведении оболочки скользящей опалубки.
К настоящему времени на объектах Минэнерго СССР введены в эксплуатацию и находятся в стадии строительства 13 дымовых труб со стальными газоотводящими стволами высотой 150—320 м, из них одна труба — с одним, три — с тремя и девять — с четырьмя стальными газоотводящими стволами.
Для стальных газоотводящих стволов характерны монтажная технологичность и сравнительно небольшие сроки возведения. Так, продолжительность монтажа четырех стальных газоотводящих стволов со всеми площадками, шахтами лифта и лестницами для дымовой трубы высотой 250 м на Лукомльской ГРЭС составила 6 мес (без учета затрат времени на подготовительные работы). При этом возведение одного ствола выполнялось за 30 дней.
На Запорожской ГРЭС возведена дымовая труба высотой 320 м с подвесным газоотводящим стволом из кремнебетонных панелей. В результате применения индустриальных методов строительства сроки сооружения газоотводящего ствола значительно (в 4 раза) сокращены по сравнению с нормативными сроками монтажа традиционной футеровки. Положительный опыт строительства дымовой трубы на Запорожской ГРЭС послужил основанием для применения сборных подвесных стволов из кремнебетона на Запорожской (труба № 2), Углегорской, Молдавской, Ставропольской, Рефтинской ГРЭС, Таллинской ТЭЦ и других ТЭС.
В целях уменьшения повреждения панелей при транспортировке и производстве работ необходимо усовершенствовать их конструкцию, улучшив прочностные характеристики.
На Экибастузской ГРЭС возведена дымовая труба № 2, конструкция которой предусматривает выполнение монолитной футеровки. Основные достоинства дымовых труб с монолитной футеровкой — простота конструкции и возможность одновременного возведения оболочки и футеровки в одной опалубке, а следовательно, сокращение сроков строительства.
Основной строительной организацией, специализирующейся на возведении железобетонных дымовых труб с кирпичной футеровкой, является трест Спецжелезобетонстрой.
Для возведения железобетонных оболочек дымовых труб в тресте используется подъемнопереставная опалубка. Работы по сооружению дымовых труб проводятся в две или три смены, а на наиболее срочных объектах — непрерывно по скользящему графику. Применяемые трестом Спецжелезобетонстрой методы прогрева бетона позволяют возводить железобетонные дымовые трубы круглогодично практически во всех климатических районах Советского Союза. Основным методом обогрева бетона в зимних условиях является выдерживание его в подвижном тепляке с обогревом рабочих зон отопительными агрегатами.
В качестве основного метода возведения газоотводящих стволов дымовых труб в СССР принят метод подращивания. Учитывая технологические возможности существующего монтажного оборудования, этот метод как наиболее экономичный применяется для монтажа не только стальных, но и кремнебетонных газоотводящих стволов. Подъемно-полиспастная система, с помощью которой производятся подъем и установка блоков газоотводящего ствола, собирается внизу, а затем поднимается на трубу электролебедками и закрепляется в рабочем положении.
Объединение Гидроспецстрой Минэнерго СССР сооружает железобетонные оболочки дымовых труб с применением скользящей опалубки. Для сооружения оболочек дымовых труб, имеющих максимальный наружный диаметр у основания 32 м при толщине стенки от 0,8 внизу до 0,3 м в верху ствола, скользящая опалубка поставки ГДР перепроектирована институтом Гид-роспецпроект. Управлением Энерговысотспецстрой ВО Гидроспецстрой начиная с 1972 г. построены с этой опалубкой железобетонные дымовые трубы высотой 180, 250 й 150 м на ТЭЦ-25, ТЭЦ-23 и ТЭЦ-26 Мосэнерго. На рис. 13.21 приведены схемы сооружений оболочек дымовых труб в подъемно-переставной и скользящей опалубке.
Проектные марки бетона оболочек труб приняты следующие: по прочности М300, морозостойкости Мрз-200, водонепроницаемости В8.
Средняя скорость скольжения опалубки при возведении железобетонной оболочки дымовой трубы на ТЭЦ-25 равнялась 2,1 м/сут. Прочность бетона через 6—8 ч после распалубки составляла 0,16—0,25 МПа.
Введение комплексной добавки позволило интенсифицировать процессы твердения бетона и увеличить скорость бетонирования оболочки в среднем на 10%.
На ТЭЦ-23 скорость подъема опалубки при применении комплексной добавки (0,15% СДБ+1% NaNO3) достигала 3,5 м/сут.
На строительстве трубы ТЭЦ-26, осуществлявшемся в зимних условиях с обогревом бетона электрокалориферами, также использовалась комплексная добавка (0,2—0,4 % СДБ+0,5 % Na2SO4), что позволило сократить продолжительность тепловой обработки на 15%.
На строительстве Экибастузской ГРЭС-1 впервые в практике энергетического строительства дымовые трубы наружным диаметром у основания 32 м с толщиной стенки 0,8 м бетонировались с помощью скользящей опалубки в условиях резкоконтинентального климата. Для ствола трубы применен бетон М400 (выше отметки 30,0 м — М350) морозостойкостью Мрз-200 и водонепроницаемостью В8. Выбор и подбор марки и состава бетона для ствола дымовой трубы № 1 Экибастузской ГРЭС-1 осуществлены институтом Гидроспецпроект.
Прочность бетона принималась на 20% выше проектной, чтобы компенсировать нестабильность качества материалов (особенно портландцемента), несовершенство бетонного завода и резкие перепады температуры воздуха.
Конструкция опалубки потребовала обеспечения стабильной подвижности бетонной смеси в месте укладки в опалубку 7—9 см по осадке стандартного конуса. Бетонная же смесь, предназначенная для укладки в опалубку, подвергается частой перевалке и значительно теряет свою подвижность. В связи с этим институтом Гидроспецпроект предложен следующий состав бетонной смеси (в расчете на 1 м3):
При таком составе была получена бетонная смесь со следующими характеристиками:
Уход за бетоном осуществляется путем нанесения на поверхность трубы пленкообразующего материала — раствора универсальной карбамндной смолы, а при отсутствии смолы — путем непрерывного полива бетона. Указанные мероприятия обеспечили получение проектных характеристик бетона.
В процессе бетонирования постоянно проводится контроль однородности бетонной смеси.
Строительство оболочек дымовых труб показало, что высокие трубы, имеющие массивные нижние части, до отметки 30,0—40,0 м целесообразно бетонировать в подъемно-переставной опалубке, а выше — в скользящей.
Поверхностно-активные добавки (например, СДБ), замедляющие потерю подвижности бетонных смесей, следует вводить в количестве 0,15—1,6% массы цемента (в зависимости от температуры наружного воздуха).
Результаты исследований и опыт бетонирования в скользящей опалубке показали, что скорость подъема опалубки необходимо назначать с учетом температуры наружного воздуха (рис. 13.22), качества бетона, минералогического состава применяемого цемента, вида и количества вводимых химических добавок. При температуре воздуха 20±5°С скорость подъема скользящей опалубки должна быть не менее 3 м/сут. При повышении температуры воздуха скорость бетонирования должна быть соответственно увеличена, с тем чтобы прочность бетона после распалубки находилась в пределах 0,1—0,3 МПа.
Перед началом сооружения дымовой трубы строительство должно быть обеспечено пленкообразующими материалами или оборудованием для непрерывного увлажнения бетона и его укрытия.